The infinite two-sided loop-erased random walk

نویسنده

  • Gregory F. Lawler
چکیده

The loop-erased random walk (LERW) in Zd, d ≥ 2, dimensions is obtained by erasing loops chronologically from simple random walk. In this paper we show the existence of the two-sided LERW which can be considered as the distribution of the LERW as seen by a point in the “middle” of the path.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-sided loop-erased random walk in three dimensions

The loop-erased random walk (LERW) in three dimensions is obtained by erasing loops chronologically from simple random walk. In this paper we show the existence of the two-sided LERW which can be considered as the distribution of the LERW as seen by a point in the “middle” of the path.

متن کامل

2 4 M ay 2 00 7 Infinite volume limit of the Abelian sandpile model in dimensions d ≥ 3 Antal

We study the Abelian sandpile model on Z. In d ≥ 3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the st...

متن کامل

Infinite volume limits of high-dimensional sandpile models

We study the Abelian sandpile model on Z. In d ≥ 3 we prove existence of the infinite volume addition operator, almost surely with respect to the infinite volume limit μ of the uniform measures on recurrent configurations. We prove the existence of a Markov process with stationary measure μ, and study ergodic properties of this process. The main techniques we use are a connection between the st...

متن کامل

Loop-Erased Random Walk and Poisson Kernel on Planar Graphs

Lawler, Schramm and Werner showed that the scaling limit of the loop-erased random walk on Z2 is SLE2. We consider scaling limits of the loop-erasure of random walks on other planar graphs (graphs embedded into C so that edges do not cross one another). We show that if the scaling limit of the random walk is planar Brownian motion, then the scaling limit of its loop-erasure is SLE2. Our main co...

متن کامل

The growth exponent for planar loop-erased random walk

We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any discrete lattice of R2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017